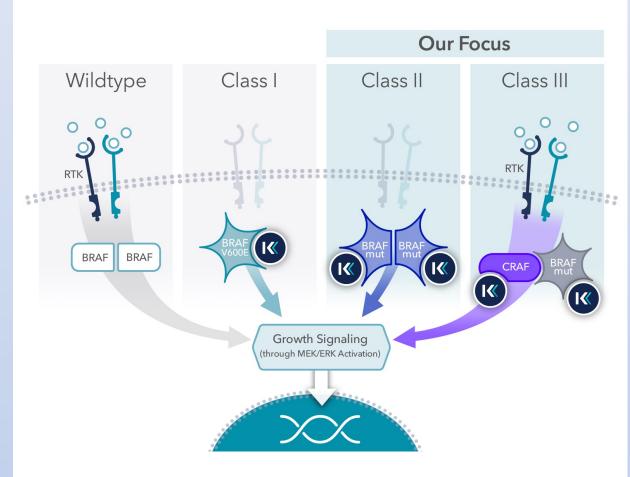
AACH

Occurrence of BRAF class II and III alterations is common across solid tumors and

is associated with inferior clinical outcomes in NSCLC and melanoma


Paul Severson¹, Elifnur Yay Donderici², Nicole Zhang², Aleksandra Franovic¹, Nichol Miller¹, Eric Murphy³, Eric Martin³, Richard Williams¹ ¹ Kinnate Biopharma Inc., CA, ² Guardant Health Inc., Redwood City, CA, ³ Formerly of Kinnate Biopharma Inc.

BACKGROUND

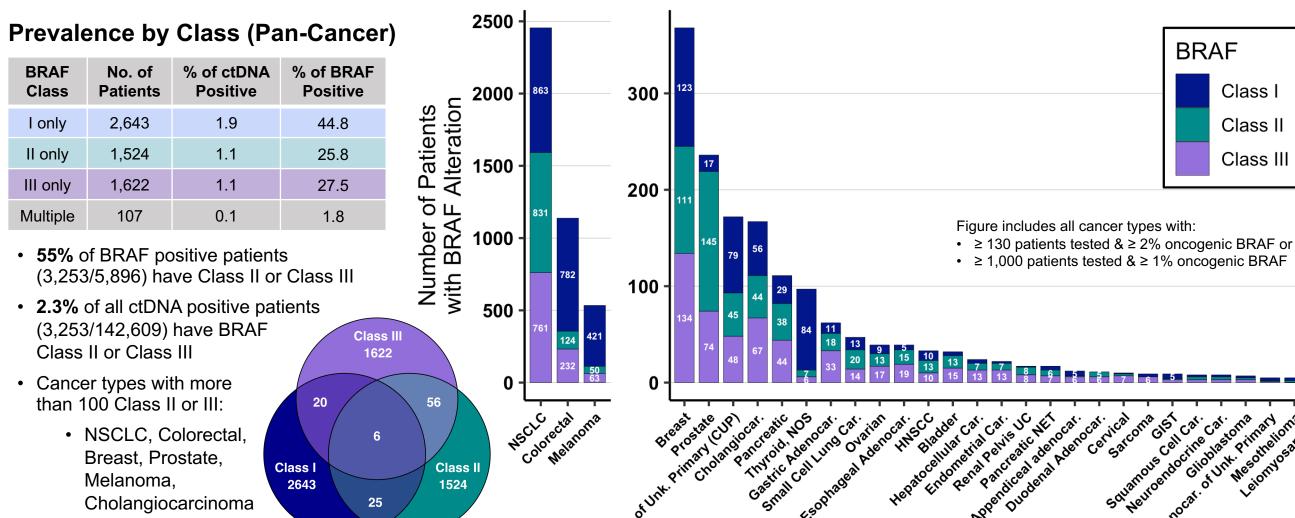
Three classes of BRAF alteration/mutation:

- Class I kinase active signaling of BRAF mutant monomers
- Class II kinase active signaling of BRAF mutant homodimers
- Class III kinase impaired BRAF that signals through RASdependent, BRAF mutant / RAF wild-type heterodimers

- There are no approved targeted therapies for patients with BRAF Class II or Class III alterations.
- > KIN-2787 is a clinical stage, small molecule pan-RAF inhibitor designed to inhibit all classes of BRAF mutations.

Class	BRAF Alterations
Class I	V600 ^{E/K/R/G/M/V/L/A/D}
Class II	Q257 ^R , P367 ^{L/S} , E451 ^Q , I463 ^S , G464 ^{V/E/R/A} , G469 ^{A/R/V/S} , V471 ^F , L485 ^{F/W} , N486_A489 ^{delinsK} , N486_P490 ^{del} , T488_P492 ^{del} , K499 ^E , L505 ^{H/F} , L525 ^R , E586 ^K , L597 ^{R/V/Q/S} , E586 ^K , T599 ^{I/R} , T599 ^{dup} , V600_K601delinsE, K601 ^{E/N/Q/T}
Class III	F247 ^L , D287 ^H , G466 ^{V/E/A/R} , S467 ^L , G469 ^E , K483 ^E , R558 ^Q , N581 ^{I/Y/S/T/K} , D594 ^{N/E/G/H/A/Y/V} , F595 ^L , G596 ^{R/C/D/V} , T599 ^A

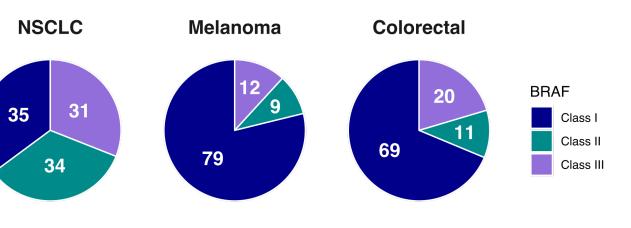
METHODS


GuardantINFORMTM de-identified clinical genomic research database spanning 3/2014 thru 6/2021:

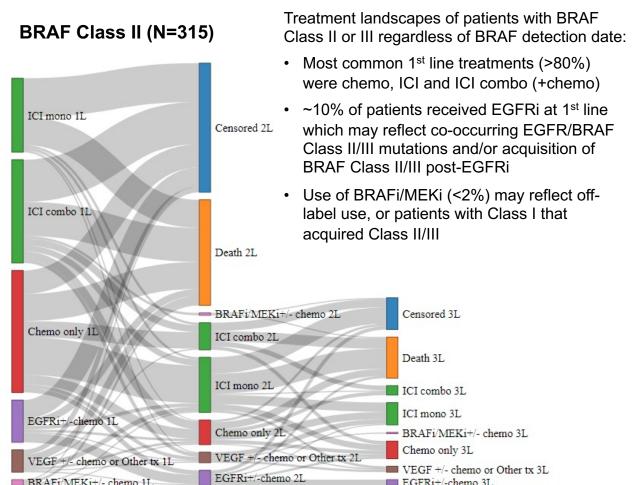
- 160,000+ patients with advanced/metastatic cancer profiled by the Guardant360® assay
- Over 80% of cases linked to treatment and procedural data
- Survival data is sourced from third party providers and aggregated with administrative claims data

Analysis of BRAF Class I, II, & III to explore:

- Pan-cancer prevalence (count, % of ctDNA positive, % of BRAF positive)
- Patient characteristics in NSCLC
- Treatment landscape in NSCLC
- Real-world overall survival measured from time of metastatic diagnosis in NSCLC and Melanoma
- Includes all BRAF Class I, II or III patients regardless of BRAF detection date
- Patients without known death date censored at their date of last know claim activity
- Cohorts compared pairwise with logrank test


RESULTS

In most of the tumor types tested by ctDNA analysis, BRAF Class II and Class III are more commor than Class I (e.g., NSCLC, Breast, Prostate, Cholangiocarcinoma, Pancreatic, Gastric Adenocarcinoma, Ovarian, etc.).

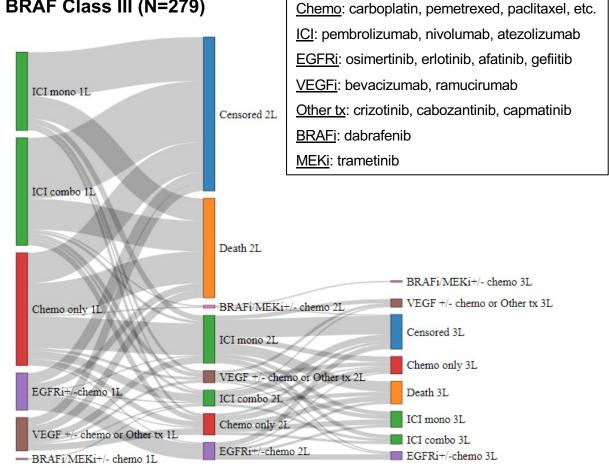

- Occurrence of multiple BRAF alterations of distinct classes within a single patient sample is rare (0.1% of ctDNA positive patients).
- In this large study of liquid biopsy-derived genomic data, BRAF Class II and Class III alterations are present across a variety of tumor types.

Percent of Oncogenic BRAF Alterations

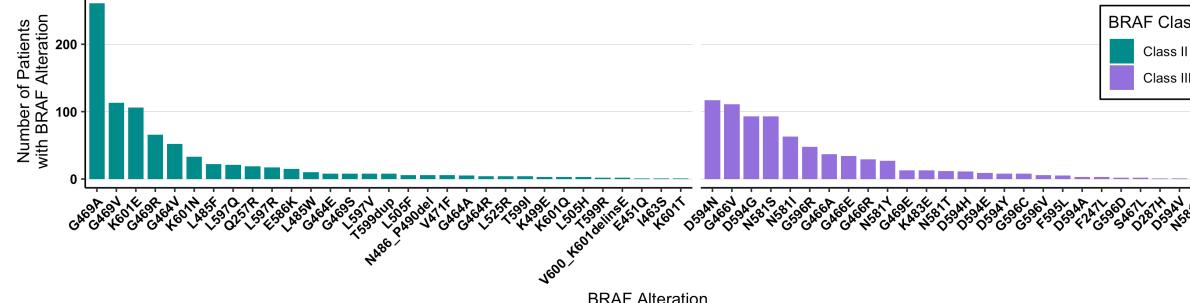
BRAF Class II and Class III accounted for 65%, 21% and 31% of oncogenic BRAF mutations in NSCLC, Melanoma and Colorectal cancer, respectively

Treatment Landscapes (NSCLC)

Patient Characteristics (NSCLC)

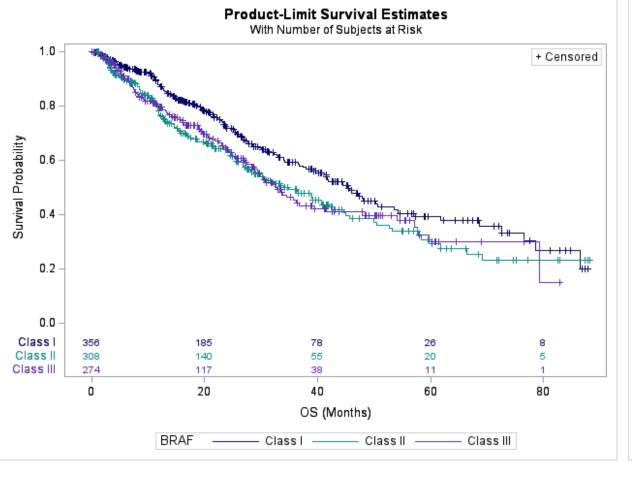

Parameters						
			Class I	Class II	Class III	
Total Number			845	810	743	P-value
0		Mean	68.61	70.10	69.37	0.0142
Age		Std Deviation	11.01	9.70	10.47	
		Median (range)	70 (23-85)	70 (42-85)	70 (41-85)	
_	Female	Frequency	476	410	371	0.0176
Gender	гентате	Percent (%)	56.33	50.62	49.93	
Jer J	Male	Frequency	369	400	372	
		Percent (%)	43.67	49.38	50.07	
u U	Jnknown or	Frequency	513	442	405	0.0144
tal tus	Still Alive	Percent (%)	60.71	54.57	54.41	
Vital Status	te of Death	Frequency	332	368	338	
	Known	Percent (%)	39.29	45.43	45.49	
g Eve	er Tobacco	Frequency	462	559	509	<0.0001
Smoking Status Lu Eve	oduct User	Percent (%)	54.67	69.01	68.51	
Sta	Linknesses	Frequency	383	251	234	
ر ق	Unknown	Percent (%)	45.33	30.99	31.49	

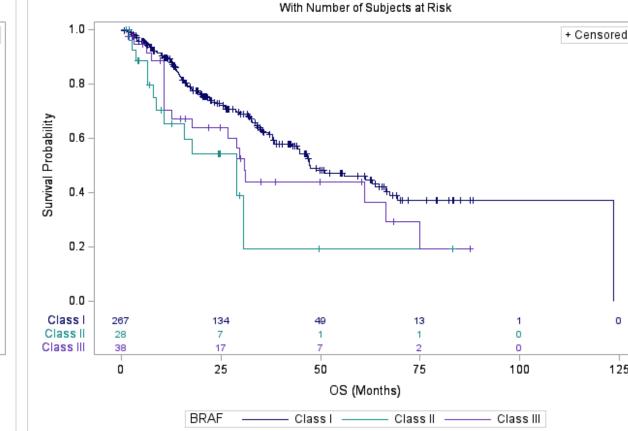
from the summary of characteristics. F test and Chi-squared test were used to compare means and frequencies respectively.


In BRAF Positive NSCLC:

- · Class I has higher frequency of female versus male
- History of tobacco use is higher in Class II and Class III compared to Class I

BRAF Class III (N=279)


Number of Patients with each BRAF Class II or Class III Alteration (NSCLC)



Real-World Overall Survival from Time of Metastatic Diagnosis (NSCLC, Melanoma)

BRAF Positive NSCLC Patients

Product-Limit Survival Estimates

- NSCLC and Melanoma patients with BRAF Class II or III had shorter median overall survival compared to patients with Class I.
 - Analyses include all patients with survival data and BRAF positive test regardless of BRAF detection date
 - Patients with multiple classes of BRAF alteration were excluded from the analyses.

		lonths (%95 C	(pairwise logrank test)			
Cohort	Class I	Class II	Class III	l vs II	l vs III	II vs III
NSCLC (n=938)	44.8 (37.5, 52.8)	34.4 (27.5, 41.5)	32.3 (28.4, 40.9)	0.006	0.0126	0.6611
Melanoma (n=333)	46.5 (42.3, 65.5)	28.5 (8.6, 30.3)	30.5 (12.5, 73.8)	0.0008	0.0165	0.6529

Median OS from Metastatic Diagnosis Unadjusted P-value

SUMMARY

- The analysis identified more than 3,250 cancer patients with BRAF Class II or Class III alterations which were detected by ctDNA profiling with the Guardant360® assay.
 - BRAF Class II and Class III were present in 55% of all patients with oncogenic BRAF alterations in the database
 - BRAF Class II and Class III were more common than Class I in most of the tumor types tested

Class I and represent a population that could benefit from novel targeted therapies

- Compared to Class I, NSCLC patients with BRAF Class II and III were more likely to have a history of tobacco use.
- In BRAF Class II and Class III NSCLC, chemotherapy and immune checkpoint inhibitors +/- chemotherapy were the
- most common 1st line treatments. NSCLC and melanoma patients with BRAF Class II and Class III alterations had shorter overall survival compared to
- A clinical trial of the pan-RAF inhibitor KIN-2787 is open to participants with BRAF and/or NRAS mutation-positive solid tumors (NCT04913285). See posters #2674 & #CT248 for more information on KIN-2787.